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Most moving objects in the world are non-rigid, changing shape as they move. To disentangle shape changes from
movements, computational models either fit shapes to combinations of basis shapes or motion trajectories to combinations
of oscillations but are biologically unfeasible in their input requirements. Recent neural models parse shapes into stored
examples, which are unlikely to exist for general shapes. We propose that extracting shape attributes, e.g., symmetry,
facilitates veridical perception of non-rigid motion. In a new method, identical dots were moved in and out along invisible
spokes, to simulate the rotation of dynamically and randomly distorting shapes. Discrimination of rotation direction
measured as a function of non-rigidity was 90% as efficient as the optimal Bayesian rotation decoder and ruled out models
based on combining the strongest local motions. Remarkably, for non-rigid symmetric shapes, observers outperformed the
Bayesian model when perceived rotation could correspond only to rotation of global symmetry, i.e., when tracking of shape
contours or local features was uninformative. That extracted symmetry can drive perceived motion suggests that shape
attributes may provide links across the dorsal–ventral separation between motion and shape processing. Consequently, the
perception of non-rigid object motion could be based on representations that highlight global shape attributes.
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Introduction

Tumbling, rolling, swaying, stretching, leaping, spin-
ning, flapping, dancing, kicking, bucking, jerking, sliding,
gliding, tripping, shaking, wobbling, and twirling are just
some of the many motions that human observers perceive
and classify effortlessly, while maintaining object identity
despite shape changes. All visual motions are first parsed
in the striate cortex by direction-selective cells that signal
local translations (Hubel & Wiesel, 1968), making it a
challenge to discover how the brain disentangles different
classes of complex motion from shape deformations.
However, since the motion of any complex non-rigid
object consists of shape transformations in systematic
rather than arbitrary sequences, several authors (e.g.,
Jenkins & Mataric, 2004; Troje, 2002; Yacoob & Black,
1999) have shown that an object’s shapes can be encoded
in a low-dimensional space. Exploiting low-dimensional

representations, computer vision models have extended
Tomasi and Kanade’s (1992) seminal factorization solu-
tion for 3-D shape from motion to the extraction of non-
rigid shapes, by using either sets of basis shapes
(Torresani, Hertzmann, & Bregler, 2008) or sets of basis
trajectories (Akhter, Sheikh, Khan, & Kanade, 2008). The
factorization algorithms, however, require the locations of
each point in each image as their input, a sequence of
operations that is biologically implausible. Neural models
for the perception of non-rigidly articulated human motion
(Giese & Poggio, 2003) suggest that view-tuned neurons
in the ventral stream provide snapshots for shapes, dorsal
stream neurons match patterns for trajectories, and later
motion-pattern neurons combine the two streams. Indeed,
some evidence suggests that neurons in the temporal
cortex encode articulated humanoid actions (Singer &
Sheinberg, 2010; Vangeneugden, Pollick, & Vogels,
2009). It is, however, unlikely that the brain has stored
snapshots for most deforming objects. As an alternative
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model, we exploit the fact that objects generally have
invariant global properties, such as symmetry, and
propose that abstracted shape properties can provide the
information needed to separate shape deformations from
global motions. We base this proposal on the results of a
new experimental method designed to study shape-motion
separations for arbitrarily deforming objects undergoing
rotations.
We used this method to tackle three fundamental issues

in object motion perception. First, we examined how
disparate local motions are combined into a coherent
global percept. Since motion-sensing cells in striate cortex
are generally cosine-tuned (Hawken, Parker, & Lund,
1988), the motion of each local segment of an object
activates neurons with preferred directions ranging over
180-, which leads to variations in local population
responses across an object’s boundary. In some cases
such as translating plaids and the barber-pole illusion,
where global motion is perceived as a single vector,
combination rules such as intersection of constraints
(Movshon, Adelson, Gizzi, & Newsome, 1985) or slowest/
shortest motion (Weiss, Simoncelli, & Adelson, 2002) can
explain the percepts. Rigid rotations require combination
rules that are not as simple as for translations (Caplovitz
& Tse, 2007a; Morrone, Burr, & Vaina, 1995; Weiss &
Adelson, 2000) but may conform to regularization princi-
ples, such as minimal mapping (Hildreth, 1984; Ullman,
1979), smoothest motion (Hildreth, 1984), or motion
coherence (Yuille & Grzywacz, 1988). By adding dif-
ferent forms of dynamic shape distortions to rotation,
we were able to tease apart the role that global represen-
tations play in combining local motion estimates into
unitary percepts.
Second, we verified that shape representations can drive

veridical motion perception without directional clues, thus
going beyond the divergence of motion computation and
shape analysis into dorsal and ventral neural streams,
respectively (Ungerleider & Mishkin, 1982). While shape-
driven motion has been demonstrated in the absence of
motion-energy signals for faces rotated from one side to
another (Ramachandran, Armel, Foster, & Stoddard,
1998) and changes in geometrical shapes, e.g., from
squares to rectangles (Tse & Logothetis, 2002), in both
of these cases, the direction of motion could be inferred
from the end shapes. We used randomly generated dotted
shapes with indeterminate orientations to prevent such
influences on rotation perception. We also quantified
human efficiency for shape-driven motion perception by
comparing accuracy to the simulated performance of an
optimal shape-based Bayesian decoder.
Third, we tested whether properties abstracted from

complex shapes can determine perceived motion. Past
work has shown that shape features, such as contour
completion, relatability, convexity, and closure, can
determine motion grouping through surface segmentation
(McDermott & Adelson, 2004; McDermott, Weiss, &
Adelson, 2001) or binding (Lorenceau & Alais, 2001), and

neuroimaging has suggested that dorsal area V3A may
extract features that are tracked in motion perception
(Caplovitz & Tse, 2007b). However, Fang, Kersten, and
Murray (2008) and Murray, Kersten, Olshausen, Schrater,
and Woods (2002) presented evidence that activation of
the Lateral Occipital Complex (LOC) reduced activity in
striate cortex during the percept of a grouped moving
stimulus but not during a non-rigid percept of the same
stimulus as independently moving features. This raises the
possibility that feature extraction and global shape
representations may play quite different roles in object
motion perception. To isolate the role of shape represen-
tations, we tested cases where tracking of shape contours
or local features was uninformative, and perceived
rotation could correspond only to rotation of a global axis
of symmetry.

Disentangling motion direction
from shape deformations

Experiment 1: Rotation detection of non-rigid
shapes

We sought to determine how specific local motions are
chosen from the set of possible correspondences and
integrated into global percepts. In the new method,
identical dots were synchronously moved in or out along
invisible spokes radiating from a center, in a manner
consistent with the rotation of a single stimulus (Figure 1A,
Movies 1–4). The stimuli consisted of jagged shapes
formed by taking 20 identical dots evenly spaced around a
circle (angular gap E = 18-) and independently varying
each dot’s radial distance from the central fixation along
its invisible spoke (Figure 1B). For each trial, the
variations were drawn from a Gaussian random distribu-
tion with zero mean and standard deviation !, the shape
amplitude. Further, on each frame in the trial, positional
noise was applied to each dot’s radial component,
independently sampled from a random Gaussian distribu-
tion with zero mean and a pre-set standard deviation %, the
dynamic jitter magnitude for that trial (Figure 1B).
In Experiment 1, shape rotation between successive

frames was set equal to the angle E, so the rotation of a
circle centered at fixation would be invisible in this
experiment. Given the ambiguous nature of the rotation, a
dot belonging to a random shape on frame i could have
been perceived as moving to either of the adjacent spokes
on frame i + 1 or along the same spoke. As illustrated in
Figure 1B, the distance between a dot at frame i was
generally shorter to the dot on the same spoke at frame
i + 1 than it was to dots on adjacent spokes. A “nearest
neighbor” rule is generally accepted as dominating the
perceived path of apparent motion in cases where mul-
tiple locations compete for motion correspondence (e.g.,
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Ullman, 1979). In addition, the shortest spatial excursion
between two frames is also the slowest motion, which has
been suggested as a governing principle in motion
perception (Weiss et al., 2002). To test whether local
correspondence or coherent global rotation dominates
motion perception in different configurations, we mea-
sured observers’ accuracy in determining the direction of
rotation as a function of the standard deviation % of
dynamic jitter. Since, a moving form is sampled through
apertures, this paradigm may seem similar to multi-slit
viewing (Anstis, 2005; Kandil & Lappe, 2007; Nishida,
2004), but it is different both in intent and design. Instead
of using familiar shapes to study form recognition, we
used unfamiliar shapes that deform during rotation to
create competition between different rules of motion
combination.

Methods

There were 10 sequential frames in each trial. The
20 white dots subtended 6.6 min arc each, varied around a
circular radius of 132 min arc, and were presented against
a black background. Shape amplitudes of ! = 4 or 13 min
arc were used to assign each dot a fixed radius for the

entire trial. Dynamic jitter was calculated independently
for each dot per frame with % set at 0, 2.5, 5, 10, 20, or
40 min arc for the trial. To vary the difficulty of the task,
we used presentation rates of 3.5, 5.5, or 12.5 frames
per second. Rotation speed was proportional to presenta-
tion rate, since all trials consisted of the same number of
frames.
Stimuli were generated with a Cambridge Research

Systems ViSaGe controlled by a Dell GX620 and dis-
played on a Sony CRT monitor with 1024 � 768 pixels
at 120-Hz refresh rate. The observer viewed the monitor at
a distance of 100 cm in a dark room with head positioned
on a chin rest. For each trial, the observer used a key press
to choose between clockwise and counterclockwise global
rotations. No feedback was provided. Trials were pre-
sented in blocks of 36, containing each of the 36 con-
ditions in random order. Observers viewed 20 blocks
spread out over 2 days, allowing for 20 repetitions of each
condition.
Data were collected from six observers, including

author EC and 5 naive observers who were paid for their
participation. All had normal or corrected-to-normal
vision and were given prior training on the experimental
task. The experiments were conducted in compliance with

Figure 1. (A) Four representative trials from Experiment 1 at different dynamic jitter values. (B) The generation technique for Experiment 1
stimuli. Dot positions were initially set by the intersection of a circle and evenly spaced spokes. Dot variation from the circle was
determined by the shape amplitude, !, for the trial and the dynamic jitter, %, added to each frame. The first two panels depict sequential
frames of the trial. The third panel superimposes the two frames to demonstrate that “nearest neighbor” motions fall along the generative
spokes rather than along the veridical rotation. Dashed lines illustrate generative technique and were not visible during the experiment.
Individual dots appear proportionately larger than the experimental stimuli.
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Movie 1. Representative trial from Experiment 1 at 3.5 Hz, ! = 10,
and dynamic jitter value (%) = 0. Recommended viewing distance
1 m.

Movie 3. Representative trial from Experiment 1 at 3.5 Hz, ! = 10,
and dynamic jitter value (%) = 20. Recommended viewing distance
1 m.

Movie 4. Representative trial from Experiment 1 at 3.5 Hz, ! = 10,
and dynamic jitter value (%) = 40. Recommended viewing distance
1 m.

Movie 2. Representative trial from Experiment 1 at 3.5 Hz, ! = 10,
and dynamic jitter value (%) = 5. Recommended viewing distance
1 m.
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the standards set by the IRB at SUNY College of
Optometry and observers gave their informed consent
prior to participating in the experiments.

Results and modeling

Figures 2A–2C display accuracy, averaged over
6 observers, plotted against % of the dynamic jitter, for
the three presentation rates, respectively. Accuracy decreased
monotonically with increasing jitter. High accuracy rates
at low jitter show that global rotation was detected easily,
despite competing with shorter inward and outward local
motions. This shows that the global percept is not formed
by combining the most salient local motions. Shapes with
larger shape amplitudes (!) were significantly more
resistant to dynamic jitter (F(1, 5) = 465.3, p G 0.0001)
but not by a constant factor as reflected in the significant
interaction between shape amplitude and jitter (F(5, 5) =
9.9, p G 0.001). An accuracy of 75% can be used as the
estimated threshold for radial jitter for each shape
amplitude. Thresholds generally corresponded to values

of dynamic jitter slightly greater than the shape amplitude,
i.e., when the deformation of the trial shape from frame to
frame was of the same order as the variations that
distinguish the trial shape from a circle. This suggests
that until the global rotation becomes incoherent, its
percept dominates the shorter/slower local motions that
indicate local expansions or contractions but do not form a
coherent percept. The difference between the two pre-
sentation times was not significant, but a small improve-
ment for less jagged shapes at faster presentation times led
to a significant interaction between presentation time and
shape amplitude (F(2, 5) = 4.7, p G 0.05). Johansson
(1975) wrote “The eye tends to assume spatial invariance,
or invariance of form, in conjunction with motion rather
than variance of form without motion”. The results of this
experiment provide limits to Johansson’s principle.
To show quantitatively that observers’ rotation percep-

tion could not be explained by combining the shortest/
slowest local motions, we implemented a Nearest Neigh-
bor Model based on closest spatiotemporal correspond-
ence. Each dot on frame i was matched to the nearest dot

Figure 2. (A–C) Rotation discrimination in Experiment 1 averaged over 6 observers, plotted against % of the dynamic jitter, for the three
presentation rates. (D) Results from Experiment 2. (E) Predictions from Nearest Neighbor Model for Experiment 1. (F) Predictions from
Nearest Rotational Neighbor Model for Experiment 2. (G) Predictions from Global Rotation Model for Experiment 1. (H) Predictions from
Global Rotation Model for Experiment 2.
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on frame i + 1. On each trial, a tally was kept of the
number of clockwise, counterclockwise, and same spoke
matches. The trial was classified as clockwise or counter-
clockwise if the majority of matches were in that
direction. For the same stimuli as used in Experiment 1,
the predicted percent of correct classifications is plotted
against dynamic jitter in Figure 2E, showing that this
model could not detect the correct direction of rotation
because its input was dominated by same spoke motions.
There remain three plausible explanations for the

experimental results. First, since observers are instructed
to report only the direction of rotation, it is possible that
they were able to ignore the radial excursions by attending
only to motions from one spoke to another, and the global
percept is created from the shorter/slower of the local
rotary motions. Second, activation of a neural template for
rotary motion, e.g., MST neurons selective for direction of
rotation (Duffy & Wurtz, 1991) supersedes other motion
percepts. Third, the observer matches shapes across
consecutive frames and infers rotation direction from the
best match. We test these possibilities in subsequent
experiments and models.

Experiment 2: Strongest local motions
vs. global rotation

The attention-based explanation would be consistent
with the finding by Chen et al. (2008) that task-dependent
spatial attention modulates neuronal firing rate in striate
cortex and that response enhancement and suppression are
mediated by distinct populations of neurons that differ in
direction selectivity. We tested this explanation by using
stimuli missing the same-spoke excursions but where the
shortest/slowest local motions were in the opposite
direction from the shape’s rotation. In Experiment 2, each
rotation was equal to 80% of the angle E between dots
(Figure 3). The shortest/slowest local motions were all
individually consistent with rotation but in the direction
opposite to the globally consistent rotation.
Experimental methods were identical to Experiment 1,

except that the magnitude of each rotation was 80% of the
distance between spokes, i.e., 14.4-. Only one presentation
speed (5.5 Hz) was used. Data were collected for author
EC and 3 experienced observers.
The average results are plotted in Figure 2D to allow

comparison with the 5.5-Hz results from Experiment 1.
The manipulation of rotation percentage made little
difference to observers’ accuracy in reporting rotation
direction. Informal reports from observers revealed they
were generally unaware of the shorter local correspond-
ence created by partial rotation. These results argue
against a combination of shortest/slowest local motions
as a basis for rotation perception. If attention is involved,
it may be captured by the dots moving coherently in one
direction (Driver & Baylis, 1989).

To provide quantitative support for this assertion, we
implemented a Nearest Rotational Neighbor Model,
which was identical to the first model, except that radial
(same spoke) motions were ignored and dots were
matched according to the shortest/slowest rotary motions.
As would be expected, this model did better for the large
amplitude shapes in Experiment 1. However, it did not
predict observers’ accuracy for the low amplitude shapes
and failed completely on the critical test provided by
Experiment 2 (Figure 2F).

Optimal global rotation model
for shape-driven rotation

Two classes of neural processes could register global
rotation, processes that differentiate between forms of
movement, and processes that differentiate between move-
ments of forms. The first class could be MST-like rotation
templates that can signal the correct direction even if
the center of rotation does not coincide with the center of
the receptive field (Zhang, Sereno, & Sereno, 1993). The
second class could consist of Procrustes-like processes
that match shapes by discounting rotation, translation,
and scaling (Mardia & Dryden, 1989). In both cases, the
modeling issues are similar: how is the error estimated
across each pair of frames, what function of this computed

Figure 3. The correspondence conflict between successive
stimulus frames in Experiment 2. Orange lines signify the shape
on frame i. Green lines signify the shape on frame i + 1. For most
dots, the shortest local path is in the direction opposite to the
global rotation.
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error is used to decide the direction, how are errors
accumulated across frames in a trial, and how is the
direction decision made for each trial. Probability theory
(Jaynes, 2003) provides optimal rules for all of these
issues. In fact, at the computational level, these rules
allow us to design the same optimal Global Rotation
Model for the two distinct neural processes.
A rotating rigid shape provides a perfect fit to a rotation

template and also a perfect shape match after rotation.
Any error in the shape match due to dynamic jitter will be
proportional to the motion deviation from a perfect
rotation template; hence, we can use the same error metric
for both processes. A number of error metrics have been
devised for shape mismatches, but for the stimuli used in
this study, a sufficient metric is to sum the squared
distances between corresponding dots, after allowing for
rotation, translation, and scaling. If Gi is the transition
from frame i to frame i + 1, dcw

i is the sum of squared
errors for transition Gi after accounting for a clockwise
rotation, and dcc

i is the sum of squared errors for transition
Gi after accounting for a counterclockwise rotation.
The optimal method to evaluate the plausibility ratio of

the two alternative rotation directions given a particular
transition is by using Bayes’ theorem to relate the
probability of the direction given the transition, to the
likelihood that the transition occurred as a result of some
rotation angle in that direction, and the prior probability of
that direction (MacKay, 2003):

PðcwkGiÞ
PðcckGiÞ ¼

X

OEcw

PiðcwÞ I PðGikEcwÞ
X

OEcc

PiðccÞ I PðGikEccÞ
; ð1Þ

where Pi(cw) and Pi(cc) are the prior probabilities for
clockwise and counterclockwise rotations (based on the
experimental design, priors were set equal to 0.5). The
likelihoods for stimulus transition Gi, P(Gi |Ecw) and
P(Gi |Ecc), were calculated for each rotation angle inde-
pendently using

P GikEkð Þ ¼ e
jdi

Ek

X

OE

ejdi
E

; ð2Þ

where, dEk
i is the sum of squared errors for transition Gi

after accounting for a rotation by an angle Ek.
The rotation was considered clockwise for 0 G Ek G :

and counterclockwise for j: G Ek G 0. Assuming that
judgments on each transition were independent of other
transitions, the plausibility ratio for each trial was taken as
the product of the ratios calculated for all transitions in
that trial. The outcome of the trial was taken as clockwise
if the trial ratio was larger than 1.0 and as counter-
clockwise otherwise.

Finally, the total numbers of correct rotation decisions
were tallied to get an accuracy proportion over all trails
belonging to each condition. These estimates are plotted
for the stimuli of Experiments 1 and 2 in Figures 2G
and 2F, respectively. The Global Rotation Model does as
well as the human observers in both experiments, sug-
gesting that the visual system could either use a rotation
template or match shapes across rotations to accomplish
the task. Note that the optimal model also performs with
greater accuracy for the larger shape amplitude, reflecting
the easier distinctions between cc and cw shape matches
as shapes depart more from the generating circle.

Human vs. model efficiency

Psychophysical results can sometimes be explained
quantitatively in terms of neural properties (e.g., Cohen
& Zaidi, 2007a). However, there is little information
about neurons that code complex motions (Duffy &
Wurtz, 1991, 1995; Oram & Perrett, 1996) or complex
forms (Gallant, Braun, & Van Essen, 1993; Pasupathy &
Connor, 1999; Tanaka, 1996; Tanaka, Saito, Fukada, &
Moriya, 1991). Therefore, instead of a neural model that
predicts rotation direction, the Global Rotation Model
provides optimal decoding of rotations at a computational
level (Marr, 1982).
To confront the model with the same problems as the

human observers, calculating the shape error required the
model to estimate the center and angle of rotation from
the frame data. In particular, the centroid of each frame
was taken as the center of rotation, creating some
variability with respect to the true center. We examined
whether performance would improve if we provided the
shape-matching algorithm with the true center of rotation
or if the center of rotation was computed as a running
average of centroids for all the frames. The improvement
in both cases was barely discernible. Similarly, using
exact errors, analytically computed from the stimulus
generation routine, to calculate likelihoods, led to only a
slight improvement in performance. This was probably
because the shape-matching routine is quite accurate, as
reflected by the fact that the distribution of errors
computed by the model was very similar to the distribu-
tion of errors computed from the combinations of
Gaussian noise distributions in the shape generation
routine. It is worth noting that the model’s performance
degraded if instead of the priors for clockwise and
counterclockwise rotations being set at 0.5, the prior for
each transition in the simulation was updated based on
the outcome of the preceding transition.
Since human and model accuracies decrease monotoni-

cally with dynamic jitter (Figure 3) and the task used a
two-alternate forced choice, we summarized the perfor-
mance curves by an accuracy threshold equal to the amount
of noise at the 75% accuracy level. Unlike usual thresh-
olds, in this case a higher accuracy threshold implies that
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the observer can tolerate more noise and hence performs
better. The horizontal lines in Figure 4 show accuracy
thresholds for human performance at three speeds for the
higher shape amplitude in Experiment 1, where the shapes
were more distinct. We simulated the thresholds of the
optimal Global Rotation Model for the stimuli of Experi-
ment 1, but instead of considering the whole shape, we
considered only 1, 2, I or 20 consecutive dots, chosen
randomly for each frame transition. The labels on the top
of Figure 4 convert number of dots considered to
percentage of available information used, which we will
use as a measure of equivalent efficiency for human
observers. At the slowest speed we tested, human
observers performed almost as well as the model that
used 18 points, i.e., at 90% of the efficiency of the optimal
decoder. This implies that the human visual system
includes near optimal processes for matching deforming
shapes and/or for detecting rotation in the presence of
strong distracting motions. The equivalent efficiency of
human observers declined at the faster presentation rates.
The equivalent linear speeds at these presentation rates
were 3.8 and 8.6 dva/s. Since motion energy is extracted
well at these speeds (Lu & Sperling, 1995; Zaidi &

DeBonet, 2000), observer limitations at higher speeds may
reflect the number of dots that can be used in shape or
motion computations at the shorter stimulus durations.

Shape-driven motion

Experiment 3: Shape axis motion

The next challenge was to devise an experiment in
which rotation direction could be determined from an
abstracted shape property in conditions where shape
matches and rotation templates are insufficient. We sought
a salient shape attribute that could retain spatiotemporal
continuity without having features that are correlated
across frames. Shape axes have been considered cen-
tral defining features of shape representation (Marr &
Nishihara, 1978), and this may be particularly true for
axes of bilateral symmetry (Wilson & Wilkinson, 2002).
In the extreme case, we presented essentially unique
symmetric shapes on each frame, so that dot-based
correlations were absent between successive frames, but
the orientations of the symmetry axes rotated consistently
in one direction. Thus, only an extracted symmetry axis
could provide a cue to rotation direction.
Stimuli were varied for symmetry in two ways. Base

shapes were generated from circles to be either symmetric
or asymmetric, and dynamic jitter was also either
symmetric or asymmetric. Trials with symmetric base
shapes and high levels of symmetric dynamic jitter
consisted of a series of distinct symmetric shapes with a
continuously turning axis (Figure 5, Movies 5–8).
In Experiment 3, all stimulus parameters from Experi-

ment 1 were repeated for all combinations of base shape
and dynamic jitter. Therefore, there were four times as
many experimental conditions (2 types of base shape �
2 types of dynamic jitter). This produced a total of
144 conditions (36 � 4). Each experimental block
contained all conditions in random order. Twenty blocks
were run for each subject. All six participants from
Experiment 1 participated in Experiment 3.
Performance accuracy in Experiment 3 as a function of

dynamic jitter is plotted in Figures 6A–6C and 6E–6G for
two shape amplitudes and three presentation rates. With
low levels of dynamic jitter, rotations of symmetric and
asymmetric shapes were detected equally. With increas-
ing dynamic jitter, the symmetric dynamic jitter results
form U-shaped functions. As dynamic jitter magnitude
increased, making each sequential shape more unique
from its temporal neighbors, symmetric motions remained
detectable for the two slower presentation rates. Observers
perceived the stimulus as rotating, despite lack of
correspondence between local elements, at magnitudes of
dynamic jitter that made it impossible for observers to
detect asymmetric global rotation at any presentation rate.
There was a significant main effect for symmetric versus

Figure 4. Seventy-five percent accuracy thresholds for human
performance at three presentation rates in Experiment 1 com-
pared with the performance of the optimal Global Rotation Model
using subsets of dots, or equivalently percent of available
information. Error bars for the model simulations are standard
errors calculated from 6 independent sets of stimuli, each
containing the same number of trials as the psychophysical
experiments.
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asymmetric jitter (F(1, 5) = 130.5, p G 0.001) and an
interaction between jitter symmetry and jitter amplitude
(F(5, 5) = 33.6, p G 0.001). As shown in Figures 6D and
6H, the Global Rotation Model demonstrated no signifi-
cant difference between symmetric and asymmetric
stimuli from Experiment 3. This demonstrates that
observers’ performance on symmetric shapes was not
due to dot-based shape or motion correlations. Compar-
ison of human and model performances show that
observers were capable of outdoing the optimal global
model by extracting relevant shape attributes that are
invisible to shape matching and rotation templates.
The question arises whether discerned movement of

symmetric shapes is based on perceived motion or on
perceived changes of orientation, a variant of the
dichotomy between motion energy and feature tracking
(Lu & Sperling, 1995; Zaidi & DeBonet, 2000). Phenom-
enologically, in these trials, unless the shapes were
perceived as symmetric, the dots were seen in random
motion. When symmetry was perceived, the impression
was that of a shape changing during rotation but not
always smoothly. Direction discernment thus required
following the rotation actively, consistent with feature
tracking or “conceptual motion” (Blaser & Sperling, 2008;
Seiffert & Cavanagh, 1998). However, symmetry-based
motion exhibits at least one signature of “perceptual
motion”, i.e., motion aftereffects. To test for motion
aftereffects, we adapted for 30-s epochs to shapes from
the Symmetric-shape + Symmetric-jitter conditions with
! = 4 and % = 40 rotated at 3.5 Hz in Experiment 3. As
shown in Figure 6C, the greatest performance advantage
for symmetry occurs in this condition. Two authors (AJ
and QZ) reported the direction of the adapting stimulus
and then judged the direction of rotation of dots forming a

circle of the same average size as the adapting stimulus.
The dots of the circle were rotated half the inter-spoke
angle at 3.5 Hz, hence were equally likely to be seen to
move in clockwise and counterclockwise directions,
unless biased by motion adaptation. For the Symmetric
shapes, AJ judged 30/30 of the adapting directions
correctly while QZ judged 26/30 correctly. More to the
point, AJ judged the motion aftereffects to be in the
direction opposite to the simulated motion 26/30 times
and QZ judged 22/30 times (chance performance can be
rejected for both observers at p G 0.01). Both observers
noted that unlike judging the direction of the jittered
symmetric shapes, judging the direction of the aftereffects
seemed effortless. These aftereffects were not an artifact,
because reliable aftereffects did not result from adaptation
to Asymmetric shape + Asymmetric jitter of the same size
at the same speed: percent corrects for Asymmetric
adapting shapes were essentially at chance, 13/30 and
15/30, as were aftereffects reported in the direction
opposite to the simulated motion, 13/30 and 16/30.

Experiment 4: Symmetry extraction durations

The results of Experiment 3 showed a decrease in
accuracy for symmetric stimuli at higher presentation
rates. To test whether this effect is due to the time
demands of symmetry detection, Experiment 4 was
designed to measure duration thresholds for perceiving
the rotation of symmetric shapes. Four of the six observers
(author EC and three others) were presented with rotations
of either rigid asymmetric shapes or symmetric shapes
with large magnitudes of symmetric dynamic jitter, at nine
presentation rates ranging from 1.5 to 60.0 Hz.

Figure 5. Four representative trials in the symmetric shape/symmetric jitter condition from Experiment 3 at four different dynamic jitter
levels. Trials with high dynamic jitter appear to display a unique shape on each frame while presenting a unidirectional rotation.
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Movie 8. Representative trial from Experiment 3 at 2.5 Hz and
symmetric dynamic jitter value (%) = 40. Recommended viewing
distance 1 m.

Movie 5. Representative trial from Experiment 3 at 2.5 Hz and
symmetric dynamic jitter value (%) = 0. Recommended viewing
distance 1 m.

Movie 6. Representative trial from Experiment 3 at 2.5 Hz and
symmetric dynamic jitter value (%) = 5. Recommended viewing
distance 1 m.

Movie 7. Representative trial from Experiment 3 at 2.5 Hz and
symmetric dynamic jitter value (%) = 20. Recommended viewing
distance 1 m.
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Figure 7. Results from Experiment 4 for each of four observers (O1–O4). Red arrows for rigid motion stimuli indicate that performance was
above threshold at all presented rates. Green bars show results for shape amplitude % = 20 and blue bars for % = 40.

Figure 6. (A–C and E–G) Results from Experiment 3 for symmetric and asymmetric random shapes. (D, H) Accuracy estimates from the
Global Rotation Model for the two shape amplitudes.
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Figure 7 shows the 75% presentation rate thresholds
estimated from psychometric functions for accuracy
(Wichmann & Hill, 2001). Observer performance for rigid
motion trials was above threshold for all presentation
rates. Average threshold for detecting symmetry axis
rotation was 7.9 Hz (SE = 1.6) for jitter amplitude % = 40
and 3.1 Hz (SE = 0.41) for % = 20. Symmetry perception is
possible in intervals as short as 50 ms under ideal
conditions (Julesz, 1971) but can take considerably longer
for complex stimuli (Cohen & Zaidi, 2007b) and non-
vertical orientations (Barlow & Reeves, 1979). The prese-
ntation rate threshold for the larger % translates into a frame
duration threshold of 125 ms. This result suggests that
observers need presentation durations compatible with
symmetry extraction to detect rotation of the symmetry axis.

Discussion

The results of this study have a number of implications
for understanding object motion perception. The results of
Experiments 1 and 2 show that human observers are
almost as efficient at detecting the rotation of arbitrarily
deforming objects as the optimal statistical decoder.
Despite competition from stronger local motion signals,
global rotation is discriminated easily and accurately in
the presence of even high levels of positional noise. The
random jitter in this method may be seen as reflecting
a worst-case scenario for motion of deforming objects.
In real-world deformations, local motions will be more
systematic and there is likely to be a higher shape
correlation across successive frames. Human observers
may thus be expected to do better than a shape-matching
model for most natural deformations, especially those that
present extra information like elongations.
The results of Experiments 3 and 4 show that observers

can use symmetry axes to infer motion direction, even
when form or motion information from the contour is
uninformative. Stable appearance descriptors can be a
tremendous aid in the critical task of object recognition.
For example, shape is the geometric descriptor that is
invariant to translation, rotation, and scaling (Kendall,
Barden, Carne, & Le, 1999). It has been suggested that by
detecting and encoding an object’s shape structure, the
visual system may form a robust object representation that
is stable across changes in viewing conditions and
efficiently characterizes spatially distributed information
(Biederman, 1987; Hoffman & Richards, 1984; Marr &
Nishihara, 1978). Some retinal projections of 3-D objects,
however, introduce shape distortions that the visual
system is unable to discount (Griffiths & Zaidi, 1998,
2000). In addition, many objects are articulated, plastic, or
elastic, so a rigid shape description is insufficient. In such
cases, invariant shape properties like symmetry may aid in
recreation and recognition of volumetric shapes from
images (Pizlo, 2008). In fact, bilateral symmetry is

widespread in natural and man-made objects (Tyler,
1996), and axes based on local symmetry have been
found to be useful in representing shapes (Blum, 1973;
Feldman & Singh, 2006; Leyton, 1992; Marr & Nishihara,
1978). Our results show that in identifying the path of a
moving object, where disparate and spatially distributed
local motion signals need to be combined (Hildreth, 1984;
Ullman, 1979; Yuille & Grzywacz, 1988), the visual
system may benefit from representation of object struc-
tures such as axes of symmetry. Symmetry was chosen as
the property examined in these studies due to its
separability from local contour properties, but it is
possible that other abstract properties related to the
contour may also benefit motion processing.
The motivation for this study was to identify the

influence of form processing on the perception of object
motion. The results of this study identify a number of such
influences. First, the selection of local motion information
for combination into a global percept depends not on the
relative strengths of local directional signals but on the
most plausible/coherent global motion (note that the dot
motions are compatible with rotation in either direction if
it is coupled with sufficient shape distortions). The global
percept may be a result of the activation of a rotation
template overriding an incoherent percept formed by the
strongest local motion signals, or it may result from a
process that infers the direction of motion as that which
gives the strongest shape correlation across frames. The
latter generalizes the basic idea behind Reichardt’s (1961)
detector to object motions more complex than translation
(Lu & Sperling, 1995). Second, the shapes we used in the
first two experiments had no inherent orientation, so the
inference of rotation from one frame to the other could not
have been based on any intrinsic quality of the shapes but
solely on the post-rotation point-wise correlation or the
most coherent global motion. Third, for these arbitrary
shapes, the high efficiency of human motion perception
could be due to either just motion or just shape
information or both. The above threshold accuracy for
motion detection of the dynamically varying symmetric
shapes, however, cannot be based on any rotation-
sensitive neuron fed by motion-energy signals, or on
correlating contours of the shape, so it must be based on
shape representations that explicitly label the extracted
symmetry axes. It is possible that shape representations
that include abstracted attributes may provide solutions to
a broad range of problems in conditions where contours or
features create ambiguous percepts. A general model for
the perception of object motion should thus include
representation processes that highlight shape attributes.
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